Формализация

Конкретный, содержательный характер аксиоматики Евклида обусловил и весьма существенные недостатки, присущие первой стадии развития аксиоматического метода. Раз предполагалось, что аксиомы геометрии описывают интуитивно очевидные свойства пространства и логика не была строго очерчена, то оставались широкие возможности при дедукции из аксиом других геометрических утверждений вводить дополнительные (помимо принятой системы аксиом) интуитивно очевидные допущения как геометрического, так и логического характера. Тем самым, по существу, оказывалось невозможным провести строго логическое развертывание геометрии.

Тем не менее построение геометрии Евклидом служило образцом логической точности и строгости не только для математики, но и для всего научного знания на протяжении многих веков. Однако постепенно, начиная примерно с XVIII в., наблюдается постепенная эволюция стандартов строгости и точности построения теории, что необходимо порождало критическое отношение к собственно евклидовой традиции.

В формировании новых представлений о существе аксиоматического метода особенно большое значение имело создание неевклидовых геометрий. Открытие неевклидовых геометрий привело к существенному изменению взглядов не только на геометрию Евклида, но и на вопрос о природе и критериях математической строгости и точности вообще. Введя в систему аксиом новый постулат о параллельных прямых, противоречивший интуитивному представлению о свойствах окружающего пространства, стало невозможно получать выводы, опираясь на очевидные, наглядные допущения. Новый взгляд на место и роль интуитивно очевидных соображений в построении и развертывании геометрии заставлял более строго отнестись к характеристике допустимых логических средств вывода с целью исключения интуитивных допущений как геометрического. так и логического характера.

Здесь важно подчеркнуть и то обстоятельство, что исследования неевклидовой геометрии поставили в центр внимания понятие структуры; от проверки и доказательства истинности отдельных (часто связанных между собой лишь благодаря обращению к интуиции) предложений перешли к рассмотрению внутренней связанности (совместимости) системы предложений в целом, к трактовке истинности (и точности) как свойства системы, независимо от того, располагаем ли мы средствами проверки каждого предложения системы или нет.

Математические теории, построенные в соответствии с теми представлениями о математической и логической строгости, которые сформировались на протяжении первых двух третей XIX в., были значительно ближе к идеалу строго аксиоматического построения теории. Однако и в них этот идеал — исключительно логического выведения всех положений теории из небольшого числа исходных утверждений — не был реализован полностью. Во-первых, при развертывании теории из принятой системы аксиом продолжали опираться на интуитивно понимаемую логику, без явного указания всех тех логических средств, с использованием которых связан вывод из аксиом доказуемых положений. Во-вторых, создание неевклидовых геометрий, резко расходящихся с геометрической интуицией, остро поставило вопрос об основаниях приемлемости подобного рода теоретических построений. Эта задача решалась путем нахождения способа относительного доказательства непротиворечивости неевклидовых геометрий. Суть этого метода состоит в том, что для доказательства непротиворечивости неевклидовой геометрии подыскивается такая интерпретация ее аксиом, которая приводит к некоторой другой теории, в силу тех или иных оснований уже признанной непротиворечивой. До тех пор. пока система аксиом не находила такой интерпретации, вопрос о ее непротиворечивости, естественно, оставался открытым. К тому же на рубеже XIX —XX вв. выяснилось, что теория множеств, из которой в конечном счете черпались интерпретации всех других математических систем, далеко не безупречна в логическом отношении. В ней были открыты различные противоречия (парадоксы), грозившие разрушить величественное здание математики.

Все это указывало на необходимость разработки некоторого другого способа доказательства непротиворечивости аксиоматически построенных теорий. С его разработкой в трудах Г. Фреге и Д. Гильберта окончательно сформировался современный взгляд на аксиоматический метод.

Обращаясь к проблеме непротиворечивости аксиоматически построенных теорий, Д. Гильберт пытался решить задачу следующим образом: показать относительно некоторой заданной системы аксиом (той или иной рассматриваемой математической теории), что применение определенного, строго фиксированного множества правил вывода никогда не сможет привести к появлению внутри данной теории противоречия. Доказательство непротиворечивости,той или иной системы аксиом, таким образом, связывалось уже не с наличием некоторой другой непротиворечивой теории, могущей служить интерпретацией данной системы аксиом, а 1) с возможностью описать все способы вывода, используемые при логическом развертывании данной теории, и 2) с обоснованием логической безупречности самих используемых средств вывода. Для осуществления этой программы надо было формализовать сам процесс логического рассуждения.

Возможность формализации процесса рассуждения была подготовлена всем предшествующим развитием формальной логики. Особо важное значение в деле подготовки возможности формализации некоторых сторон процесса логического рассуждения имело обнаружение того факта, что дедуктивные рассуждения можно описывать через их форму, отвлекаясь от конкретного содержания понятий, входящих в состав посылок.

Первоначальный этап развития теории формального вывода связан с именем Аристотеля. Он впервые ввел в логику переменные вместо конкретных терминов, и это позволило отделить логические формы рассуждения от их конкретного содержания. С середины XIX в. был сделан решительный шаг к замене содержательного рассуждения логическим исчислением, а тем самым — к формальному представлению процесса рассуждения. В работах Г. Фреге логика строится в виде аксиоматической теории, что позволяет достичь значительно большей строгости логических рассуждений. В исчислениях современной формальной логики метод формального рассмотрения процесса рассуждения получает свое дальнейшее развитие.