Наряду с абстрагированием, важнейшим методом научного познания на эмпирическом уровне познания является индукция. Индукция — это метод движения мысли от менее общего знания к более общему. В качестве посылок индуктивных выводов обычно выступают или множество высказываний, фиксирующих единичные наблюдения (протокольные предложения) или множество фактов (в форме универсальных или статистических высказываний). Заключением же индуктивных выводов часто являются универсальные высказывания об эмпирических законах (причинных или функциональных). Так, в XVIII веке Лавуазье на основе многочисленных наблюдений тою, что ряд веществ, подобно воде и ртути, может находиться в твердом, жидком и газообразном состоянии, делает очень значимый для химической науки индуктивный вывод, что все вещества могут находиться в трех указанных выше состояниях. Указанный выше пример индуктивного вывода относится к такому их классу, который называется перечислительной индукцией.
Перечислительная индукция — это умозаключение, в котором осуществляется переход от знания об отдельных предметах класса к знанию обо всех предметах этого класса или от знания о подклассе класса к знанию о классе в целом (в частности, это могут быть статистические выводы от образца ко всей популяции). Имеются две основных разновидности перечислительной индукции: полная и неполная. В случае полной индукции мы имеем дело, во-первых, с исследованием конечного и обозримого класса. Во-вторых, в посылках полной индукции содержится информация о наличии или отсутствии интересующего исследователя свойства у каждого элемента класса. Например, посылки утверждают, что каждая планета Солнечной системы движется вокруг Солнца по эллиптической орбите. Заключением полной индукции является общее утверждение — закон «Все планеты Солнечной системы движутся вокруг Солнца по эллиптическим орбитам», которое относится ко всему классу планет. Очевидно, что заключение полной индукции с необходимостью следует из посылок. Однако, очевидно и другое. Л именно, что наука очень редко имеет дело с исследованием конечных и обозримых классов. Как правило, формулируемые в науке законы относятся либо к конечным, но необозримым в силу огромного числа составляющих их элементов классов, либо к бесконечным классам. В таком случае ученый вынужден делать индуктивные заключения обо всем классе на основе множества утверждений о наличии какого-либо интересующего его свойства только у части элементов этого класса. Такая разновидность перечислительной индукции называется неполной индукцией. Очевидно, что заключения выводов по неполной индукции не следуют с логической необходимостью из посылок, а только, в лучшем случае, подтверждаются последними. Все такие заключения могут быть опровергнуты в будущем в ходе фиксации отсутствия интересующего нас свойства у остальных, неисследованных ранее элементов данного класса. Таких примеров наука знает огромное множество (доказательство ложности индуктивных заключений о том, что «все рыбы дышат жабрами» или что «все лебеди — белые» и т. д. и т. п.).
Заключения по неполной индукции всегда являются незаконными с логической точки зрения и гипотезами в гносеологическом плане. При.неполной индукции ученый сталкивается с явной ассиметрией подтверждения и опровержения. Любой вновь обнаруженный подтверждающий (верифицирующий) факт не добавляет ничего эпистемологически нового, но единственный опровергающий (фальсифицирующий) факт ведет к отрицанию обобщения в целом.
Таким образом, в методологическом плане верифицируемость и фальсифицируемость оказываются несимметричными. Правда, в начальный период сбора фактов и накопления систематических наблюдений как положительные, так и отрицательные факты являются равновероятными и, следовательно, заключают в себе одинаково значимую информацию. Здесь еще нет ассиметрии. Однако в ситуации, когда фальсифицирующие факты долго отсутствуют в проводимых наблюдениях, растет психологическая уверенность в их малой вероятности.
Придя к выводу, что вероятность отрицательных фактов близка к нулю, мы оказываемся в ситуации. когда каждый новый верифицирующий факт уже не несет никакой новой информации. Напротив, обнаружение факта, опровергающего индуктивное заключение, — в виду его полной неожиданности — содержит в себе, в формальном смысле, бесконечное количество информации.
Кроме перечислительной индукции в науке используются такие ее виды, как индукция через элиминацию, индукция как обратная дедукция и подтверждающая индукция. Идея индукции через элиминацию впервые была высказана в работах Ф. Бэкона, который противопоставил ее перечислительной индукции как более надежный вид научного метода. Согласно Бэкону, главная цель науки — нахождение причин явлений, а не их обобщение. А потому научный метод должен служить открытию причинно-следственных зависимостей и доказательству утверждений об истинных причинах явлений. Смысл индукции через элиминацию заключается в том, что ученый сначала выдвигает на основе наблюдений за интересующим его явлением несколько гипотез о его причинах. В качестве таковых могут выступать только предшествующие ему явления. Затем в ходе дальнейших экспериментов, наблюдений и рассуждений он должен опровергнуть все неверные предположения о причине интересующего его явления. Оставшаяся неопровергиутой гипотеза и должна считаться истинной. Высказав идею индукции через элиминацию, Бэкон, однако, не предложил конкретных логических схем этого вида индуктивного рассуждения.
Эту работу осуществил в середине XIX века английский логик Дж.Ст. Милль. Разработанные им различные логические схемы элиминативной индукции впоследствии получили название методов установления причинных связей Милля (методы сходства, различия, объединенный метод сходства и различия, метод сопутствующих изменений и метод остатков). Все методы Милля опираются на следующее определение существования причинно-следственной связи между событиями: если наблюдаемое явление А имеет место, а наблюдаемое явление В за ним не следует, то А — не причина В, если В имеет место, а А ему не предшествует, то А — не причина В. Правило метода сходства: «Если два или более случая подлежащего исследованию явления имеют общим лишь одно обстоятельство, то это обстоятельство, — в котором только согласуются все эти случаи — есть причина данного явления».
Правило метода различия гласит: «Если случай, в котором исследуемое явление наступает, и случай, в котором оно не наступает, сходны во всех обстоятельствах, кроме одного, встречающемся лишь в первом случае, то это обстоятельство — в котором одном только и разнятся эти два случая, есть... причина... или необходимая часть причины явления».
Метод остатков: «Если из явления вычесть ту его часть, которая, как известно из прежних индукций, есть следствие некоторых определенных предыдущих, то остаток данного явления должен быть следствием остальных предыдущих».
Таким же образом Милль формулирует два других метода: метод сопутствующих изменений и объединенный метод сходства и различия. Он считал, ч го сформулированные им индуктивные каноны являются:
а) методами открытия и доказательства причинных законов;
б) единственно возможными научными методами доказательства таких законов.